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ABSTRACT

Theheterotrimeric G-protein complex, comprisingof G o, G, and G, subunits. Itisan evolutionarily conserved-
signaling molecular machine which transmits signals from transmembrane receptors to downstream target
proteins. Now-a-days their functions in plant stress-signalling have been reported. Here we report the
physiological function of rice G-protein 3 subunit (RGGL1) rice (Oryza sativa L. cv. IR64) plants under salinity
stressin T, generation. The overexpression of CaMV35Spromoter driven RGG1 intransgenic rice confers high
salinity (200 mM NaCl) stress tolerance. Agronomic parameters were studied and found to be higher in the

transgenic plants with respect to wild type (WT) plants.
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Salinity is a widespread soil problem limiting crop
productivity worldwide, especially in the tropical and
irrigated fields where salinization has caused
deterioration of agricultural lands (Mahajan and Tutgja
2005; Munns and Tester 2008). Several studies have
demongtrated that theintroduction of foreign genesinto
crop plants provides resistance against biotic as well

as abiotic stresses (Xiong et al. 2006; Mazzucotelli et
al. 2008; Chen et al. 2013). It was studied earlier that
some RNA/DNA helicasesalso play animportant role
in the abiotic stressresistance (Liu et al. 2002; Tuteja
and Tuteja 2006; Vashisht and Tuteja 2006; Kant et al.
2007; Li et al. 2008). Recently, the over-expression of
a mitochondria helicase OsSUV 3 has been reported
toimpart salinity stresstoleranceinrice plantswithout
yield loss (Tutgjaet al. 2013).

Rice (Oryza sativa) is an important cereal
crop that provides a staple diet for amost half of the
world's population and isthe major food crop cultivated

inAsia. Thequality andyield of riceis greatly affected
by environmental stressessuch assalinity, drought, heat
and cold. Abiotic stresses decrease both the growth
and productivity of crops by reducing photosynthesis,
decreasing seedling fresh weight, germination
percentage and biomass and increasing the generation
of reactive oxygen species (ROS) (Hadiarto and Tran,
2011). Theheterotrimeric G-proteinsare composed of
Ga (39-52kDa), Gp (34-36 kDa) and G, (7-10kDa)
subunits (Gilman 1987; Tuteja and Sopory 2008). G-
proteins transduce the signals from the outside
environment to inside possibly through regulators
(Colaneri etal. 2014). Subunits of G-protein have been
reported in several plants such as arabidopsis, |otus,
lupin, pea, rice, soybean, spinach, tobacco, tomato and
wild oat (Jones and Assmann 2004; Assmann 2002;
Mishraet al. 2007; Yadav et al. 2012). Plant G-proteins
have been reported to regulate the ion channels, cell
proliferation and devel opmental eventsand areinvolved
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in plant responses to stress, light, hormones, innate
immunity, and in controlling shoot meristem size (Jones
2002; Jones and Assmann 2004; Perfus-Barceoch et
al. 2004; Chen et al. 2006; Bommert et al. 2013;
Cheng et al. 2015; Maruta et al. 2015). Pea G-proteins
have been shown to be regulated under stress (Mishra
et al. 2007; Bhardwaj et al. 2011). In recent studies, it
was found that G-protein apha null mutation confers
prolificacy potential in maize (Urano et al. 2015), and
type B heterotrimeric G-protein gamma-subunit
regulates auxin and ABA signaling in tomato
(Subramaniam et al. 2016). Furthermore, the
interactome of arabidopsis G-protein reveals that G-
proteinsare multifunctional and play significant rolein
the development and combat against environmental
stresses (Klopffleisch et al. 2011).

In the current study, we have developed
transgenic rice plantsIR64 (Oryza sativa L ., cv. IR64)
by over-expressing RGG1 gene. We observed that the
over-expression of RGG1 |eadsto the enhancement of
salinity stresstol erance by coping with stress-induced
oxidative damage.

MATERIALS AND METHODS

Polymerase chain reaction and Western-blot
analysis
Integration of the RGG1 gene was checked by PCR

using 35sCamv  forward primer (5'-
AGAAGACGTTCCAACCACGTCTT-3) and RGG1
gene specific reverse primer (5'-

TCACAAAAACCAGCATTTGCATCTG-3). The
crude plant extract from WT and over expressing lines
was prepared using the method described (Hurkman
and Tanaka 1986). Equal amount of crude proteinswere
denatured and separated using SDS PAGE,
electroblotted onto polyvinylidene fluoride (PVDF)
membrane and then probed with mouse polyclonal
antibodies (1:1,000 dilution) raised against full length
RGGL1 and the crude extract from WT plant wastaken
as negative control. Western blot analysis using anti-
RGG1 (1:5000) primary and alkaline phosphatise
conjugated anti-mice (Sigma) secondary antibodies
(1:1000 dilution) was performed to check theproduction
of the protein by the transgenic lines. The blot was
developed as per manufacturer'sprotocol (Sigma). The
a kaline phosphatase conjugated secondary anti-mouse
1gG antibody (Sigma-Aldrich http://
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www.sigmaal drich.com) was used at 1:10000 dilution.
I solation of RNA and quantitativereal-timePCR

25-days-old rice (Oryza sativa cv. IR64) seedlings
sampleswere harvested. Leaf samples of thewild type
(WT) plantsaswell as T, transgenic lines (L 1-L5) were
used for RNA isolation and gRT-PCR was performed
asdescribed earlier (Tutgja et al. 2013). For gRT-PCR,
the RGG1 gene specific primers (forward 5'-
GCGCTTTCTCGAGGAACTTGAAG-3 and reverse
5-CTTGCCAGTCTTGGGACAGATGGTTTG-3)
wereused. Theexpressionwashormalized to « -tubulin
(forward 5-GGTGGAGGTGATGATGCTTT-3' and
reverse 5-ACCACGGGCAAAGTTGTTAG-3) and
calculated using the 2= ¢ method from three
independent experiments (Livak and Schmittgen 2001).

M easurement of photosynthetic activities,
agronomic attributesand endogenousion content
of T, transgenicplants

45-days-old seedlings of transgenicand WT plantswere
allowed to grow in 200 mM NaCl inatank till maturity.
The different photosynthetic parameters like stomatal

conductance (gs), net photosynthetic rate (PN), and
intercellular CO, concentration (Ci) were recorded in
fully expanded leaves using an infrared gas analyser
(IRGA; LI-COR, http://www.licor.com) on asunny day
between 10:00-11:30 am. The different agronomic
characteristics were measured at 0 and 200 mM NaCl

treatment in T, transgenic and WT plants using the
method described (Tutgja et al. 2014). The endogenous
ions (phosphorous, potassium and sodium) content were
measured as described earlier (Tutgja et al. 2013).

Biochemical assays of RGGL1 transgenic plants
in T generation

Biochemical analysislike lipid peroxidation, catalase
(CAT), ascorbate peroxidase (APX), glutathione
reductase (GR) and proline were carried out by using
25-days-old WT and transgenic rice seedlings exposed
for 24h to salt stress. The eectrolytic leakage was
measured as previously described (Garg et al. 2012).

Satistical analysis

The experiment was arranged in a randomized block
design. For various growth parameters of the WT and
RGGL1 T, transgenic plants, values are presented
asmeans of threereplicates (each plant was considered
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3) of control (WT) and

a replicate). Here the 'mean of three replicates'
representsthe 'mean of threeindependent plants. Data
were analysed statistically and standard errors were
calculated. Least significant differences (LSDs)

between the mean values (n
RGGL1 overexpressing transgenic rice lines (L1-L5)

were calculated by one-way analysis of variance
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and transcript profile analysis of T, RGG1

transgenicriceplants

The T, transgenic rice plants were developed using
the T-DNA construct of the RGG1 gene (Figure 1a).
Phenotypically the transgenic rice plants were

significantly taller (L1-L5) than the WT (Figure 1b).
Theintegration of thetransgene (RGG1) was confirmed

by PCR using 35S forward and the gene specific
reverse primers. The expected size band of 430 bp was
observed (Figure 1c). The western blot results show

all the transgenic lines L1-L5 (Figure 1d).The RGG1

transcript level was up-regulated significantly by 10-
to 12-foldsin comparison with the WT plants (Figure

le).
Agronomic performanceof RGG1 T, transgenic

that the protein isexpressed to almost similar levelsin
plantsunder stress

Under 200mM NaCl stress condition the RGG1
transgenic plants showed better performancein several
root dry weight and leaf area, as compared to the WT
plants (Table 1). Several yield characters, such asdays
required for flowering, number of tillers per plant,
panicles per plant, filled grain per panicle, chaffy grain
per panicle, 100 grain weight at 200 mM NaCl were
recorded and found to beamost smilar tothe WT plants

growth parameters, such as plant height, root length,
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did not survivetill flowering stage under 200 mM NaCl

growninwater (0 mM NaCl). However, theWT plants
stress (Table 2).
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89+2.42
88+4.0°
04+0.21°
61+1.42
2.61+0.10% 2.68+0.12° 2.61+0.11% 2.68+0.12" 2.63+0.112

200

Line5
24+0.13% 21+1.0®

23+0.14® 21+1.2®

93%3.12
95+3.232
05+0.05°
62+2.22

200
90+2.12
81+3.12
06+0.11°
48+2.12

27+0.11® 20+1.0*

Line4

21+0.12® 20+1.32
96+3.32

08+0.12°

59+3.042

94+3.62
47.13+1.1°61.99+1.2°42.28+1.1> 61.19+1.2° 48.6+1.3°

ND-No data, * control plants did not survived till harvesting under 200 mM NaCl. Each value represents mean of three replicates + SE. Means were compared
using ANOVA. Datafollowed by the same lettersin arow are not significantly different at P > 0.05 as determined by least significant difference (LSD) test. a,

05+0.11°
b, cindicate significant differencesat P > 0.05 level as determined by Duncan’s multiple range test (DM RT).

90+2.72
19+1.02
21+1.22
86+3.22
55+1.32

200

Line3
93+2.62
22+0.122
25+0.152
95+3.272
07+0.21°
63+1.8°
2.64+0.14°
63.36+1.2°

90+2.72
85+4.12
04+0.22°
60+1.62

200

200 mM NaCl grown T, RGGL1 transgenic plants

Line2
26+0.13% 22+1.1®

92+3.0°
93+£3.232
05+0.06°
68+2.12

87+2.22
83+3.22
05+0.11°
47+2.3°

200

23+0.12% 22+1.2% 22+0.15% 21+1.2%®
2.68+0.12° 2.61+0.11° 2.68+0.12" 2.66+0.10%
52.99+1.4 45.49+0.3° 62.07+0.5% 47.48+1.1°

22+0.11® 21+1.1%

96+3.22
07+0.12°
55+3.05%

93£3.62

200
ND*
ND
ND
ND
ND
ND
ND

Control WT plants Linel

22+1.0¢
18+0.5°
84+3.1°

No. of chaffy grainsg/panicle 13+0.212
56+1.3°
2.78+0.12
37.64+1.22ND

Yield attributes
Timerequired for flowering 91+2.32
(days)

No. of tillers/plant

No. of panicle/plant

No. of filled grain/panicle

Straw dry weight ()

100 grain weight

Seed weight per plant

Table 2 Comparison of variousyield parametersof WT and T , generation of RGG1 over expressing transgeniclines(Line 1, Line2, Line3, Line4 and Line5) of

rice(Oryzasativa L. cv. IR64) under 0 or 200 mM NaCl, respectively.

-
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a

OryzaVol. 54 No. 1, 2017 (13-20)

Photosynthetic characteristicsand endogenous
ion contentsof RGG1 T transgenic plantsunder
stress

The photosynthetic characteristicsof transgenic aswell

as WT plants were measured after one week of
induction of salt (200 mM NacCl) stress. The
photosynthetic rate declined by 35%inWT ascompared
with RGGL1 transgeniclines. The stomatal conductance,
net photosynthetic rate and intracellular CO, wereaso
higher in transgenic lines as compared to the WT plants
(Table1). Inthe presence of NaCl (200 mM), theWT
plants accumulated excess sodium whereas the
transgenic lineshad reduced amountsof sodiumintheir
leaves. Salt-treated T, transgenic lines showed higher
accumulation of phosphorusand potassium (Table 1).

Analysis of antioxidant enzymes activities and
response of ion leakage, proline content
malondialdehyde(M DA) in T3RGG1 transgenic
plants

The overexpression of RGGL1 resulted in increased
enzymatic activities of CAT, APX and GR due to salt
treatment (200 mM NaCl) in transgenic plants (Fig.
2a-c). The changes induced by the presence of salt in
the accumulation of MDA, ion leakage and proline
antioxidant machineriesin T, transgenic lines (L 1-L5)
were compared with rice seedlings of WT plants. The
levelsof MDA, ion leakage were significantly reduced
while proline content were increased in RGG1
transgenic lines as compared to the WT under salt (200
mMNaCl) stress (Fig. 2d-f). The increased
detoxification of ROS led to reduced membrane lipid
peroxidation i.e., MDA production and membrane
damage as indicated by electrolyte |leakage.

G-proteins are ubiquitous in nature, and are
known to beinvolved in diverse cellular and metabolic
processes, including their new emerging role in plant
abiotic stress tolerance (Misra 2007). Salinity is a
multigenic trait which controls the whole plant
machinery and rice productivity is severely affected
due to this stress. Although G-gamma subunits were
initially regarded as a passive partner in the G beta-
gamma dimer whose only function was to anchor the
dimer to the plasmamembrane, they have now emerged
asan important member of the heterotrimer, providing
multiple physiological functionsin plants (Jonesand
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Fig. 1 Analysisof RGG1 over expressingtransgenic T, IR64 rice plants. (a) The OsRGG1 genecloned in plCAMBIA 1302 vector
at Hindll1 site. (b) Transgenic plants (L 1- L5) along with WT. (c) PCR analysis of the RGG1 over expressing transgenic (T )
lines along with wild type (WT), positive control (PC) and negative control (NC) shows the amplification of the 430 bp
fragment. (d) Western blot analysis showing the production of RGG1 protein (~11kDa). (€) Red time PCR analysis of the RGG1
over expressing transgenic (T ) lines (L 1- L5) along with WT
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Fig. 2. Biochemical analysisof RGG1 over expressing T , transgeniclines (L 1- L5) dongwithWT. (a) Catalase (CAT) activity,
one unit of enzyme activity defined as 1 p mol H,0, oxidized min. (b) Ascorbate peroxidase (APX) activity, one unit of
enzyme activity defined as 1 1 mol of ascorbate oxidized min-. (c) Glutathione reductase (GR) activity, one unit of enzyme
activity isdefinedas1 p mol of GS-TNB formed min dueto reduction of DTNB (d) Lipid peroxidation expressed in terms of
mal ondialdehyde (MDA) content. (€) Percent el ectrolytic leakage. (f) Level of proline accumulation.
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al. 2015; Maruta et al. 2015). The present study was
conducted in order to study the function of RGG1 in
providing salinity stresstoleranceinrice (Oryzasativa
L. cv. IR64).

The RGG1 overexpressing transgenic lines
retained more chlorophyll than WT under salinity stress,
which isin agreement with the earlier reports (Sanan-
Mishra et al. 2005; Moradi and Ismail 2007; Dang et
al. 2013; Singh et al. 2012; Sahoo et al. 2012). The
photosynthetic activities like net photosynthesis rate
(Pn), stomatal conductance (gs), and intercellular CO,
concentration (Ci) were decreased by salinity stress
but alesser reduction was observed in RGG1transgenic
lines as compared to WT plants. The better control
over photosynthesis apparatus under salinity stress may
be due to retention of chlorophyll content in these
transgenic lines. It has been reported earlier also that
tolerance in PDH45 and SUV 3 overexpressing rice
plants in stress results due to maintenance of the
photosynthetic apparatus (Gill and Tutegja2010; Tutgja
et al. 2013). Under salinity stress plant produces more
ROS, which can cause serious damage to plasma
membrane, chloroplasts and mitochondria by
peroxidation and de-esterification of membranelipids
and damageto nucleic acidsand proteins (Gill and Tutgja
2010).

The antioxidant enzymes such as APX, GPX
and GR showed significantly higher activity under
salinity stress in T, transgenic lines as compared to
WT plants, which help in scavenging the ROS
production during the stress. To protect the plantsfrom
theinjurious effectsof H,O,, plants produce moreAPX
through the AsA-GSH cycle, where APX uses
ascorbate as hydrogen donor and GR catalyses the
NADPH dependent reduction of GSSG (oxidised form)
to GSH (reduced form) and maintainshigh ratio of GSH/
GSSG (Gill and Tuteja2010).

Higher concentration of potassium and lower
concentration of sodiumwerefound inleavesof RGG1
overexpressing transgenic linesthan WT plants under
salinity stress. It indicates that the overexpression of
RGGL1 may restrict the entry of sodium ions in the
leaves of transgenic linesthereby contributing towards
protection of photosynthetic machinery from salinity
stress.

OryzaVol. 54 No. 1, 2017 (13-20)
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